Math, asked by computergenius2806, 9 months ago

Sin theta+cosec theta= 2 find sin^2 + cosec^2 without using identities

Answers

Answered by harshvalaki
0

Answer:

\sin^{2} ( \alpha )  +   \csc ^{2} ( \alpha )  = 2

Step-by-step explanation:

For simplicity I'm taking theta as alpha

 \sin( \alpha )  +  \csc( \alpha )  =  \sin( \alpha ) +  \frac{1}{  \sin( \alpha )  }

Now squaring on RHS, we get:

( \sin( \alpha )  +  \frac{1}{ \sin( \alpha ) } )^{2} =  ( \sin^{2} ( \alpha )  +  \frac{1}{ \sin^{2} ( \alpha ) }  + 2)

4 =  \sin^{2} ( \alpha )  +  \frac{1}{ \sin ^{2} ( \alpha ) }  + 2

\sin^{2} ( \alpha )  +  \frac{1}{ \sin ^{2} ( \alpha ) }  = 2

\sin^{2} ( \alpha )  +   \csc ^{2} ( \alpha )  = 2

Answered by harleyqueen22
0

Answer:

The above pic is the answer...plz follow it...Gud luck...

Attachments:
Similar questions