Math, asked by vedchaturvedi0001, 11 months ago

sin theta +cosec theta=2 then sin2016+cosec 2016 equals to

Answers

Answered by guptaramanand68
2
NOTE: You have to be patient while going through the answer as it is long.

\sin(x)+\cosec(x)=2
\sin(x)+\frac{1}{\sin(x)}=2

Let \sin(x)=y
Then \sin(x)+\frac{1}{\sin(x)}}=y+\frac{1}{y}=2

Here is a formula derivation, if you only want the result you may skip it.

Let
y + \frac{1}{y} = a
(here a=2)

Let
 y = {e}^{iz}
for some complex z.

Therefore,
 \frac{1}{y} = {e}^{ - iz}
Euler's formula:
 {e}^{iz} = \cos(z) + i \sin(z)

Therefore,
 {e}^{ - iz} = \cos( - z) + i \sin( - z)

 {e}^{ - iz} = \cos(z) - i \sin(z)

(since sine is an odd function and cosine is an even function. This means sin(-x) = -sin(x) and cos(-x) = cos(x) )

Thus,
 {e}^{iz} + {e}^{ - iz} = 2 \cos(z)
y + \frac{1}{y} = 2 \cos(z)
a = 2 \cos(z)
 \frac{a}{2} = \cos(z) \\ arc \cos( \frac{a}{2} ) = z

Now
 {y}^{n} + \frac{1}{ {y}^{n} } = {e}^{izn} + {e}^{ - izn}
 {e}^{izn} + {e}^{ - izn} = 2 \cos(nz)

(Using de moivre's theorem.
This is easy to understand if you know law of exponents.)

 y^{n} + \frac{1}{ {y}^{n} } = 2 \cos(nz) \\ {y}^{ n} + \frac{1}{ {y}^{n} } = 2 \cos(n \times arc \cos( \frac{a}{2} ) )

This is the formula which is now going to be used.

Replace n=2016 and a=2 in the formula.

 {y}^{2016} + \frac{1}{ {y}^{2016} } = 2 \cos(2016 \times arc \cos( \frac{2}{2} ) ) \\ {y}^{2016} + \frac{1}{ {y}^{2016} } = 2 \cos(2016 \times \: arc \cos(1) )

As,
arc \cos(1) = 0

Therefore,
 {y}^{2016} + \frac{1}{y^{2016} } = 2 \cos(0) \\ {y}^{2016} + \frac{1}{y^{2016} } = 2
(as cos(0)=1)

 { \sin }^{2016} x + \frac{1}{ \sin^{2016}x } = 2 \\ { \sin }^{2016} x + \csc^{2016}x = 2

That's it.
Similar questions