Math, asked by shriyansh4, 1 year ago

sin theta + cosec theta whole square + cos theta + sec theta whole square equals to 7 + 10 square theta + cot square theta

Answers

Answered by presentmoment
215

\bold{(\sin \theta+\csc \theta)^{2}+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta}

Given:

(\sin \theta+\csc \theta)^{2}+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta

To Prove:

L.H.S = R.H.S

Proof:

L.H.S

(\sin \theta+\csc \theta)^{2}+(\cos \theta+\sec \theta)^{2}

Using the formula of \bold{(a+b)^{2}=\left(a^{2}+b^{2}+2 a b\right)} we get the value of  

=\sin ^{2} \theta+\csc ^{2} \theta+2 \sin \theta \csc \theta+\cos ^{2} \theta+\sec ^{2} \theta+2 \cos \theta \sec \theta

Convert the identity of cosec to \frac{1}{\sin \theta} and sec to \frac{1}{\cos \theta} we get:

=\sin ^{2} \theta+\csc ^{2} \theta+2 \sin \theta \cdot \frac{1}{\sin \theta}+\cos ^{2} \theta+\sec ^{2} \theta+2 \cos \theta \cdot \frac{1}{\cos \theta}

Deducting common values, we get:

=\sin ^{2} \theta+\csc ^{2} \theta+2+\cos ^{2} \theta+\sec ^{2} \theta+2

Adding the value of  \cos ^{2} \theta+\sin ^{2} \theta=1 in the above equation

\begin{array}{l}{=\csc ^{2} \theta+2+1+\sec ^{2} \theta+2} \\ {=\csc ^{2} \theta+\sec ^{2} \theta+5}\end{array}

Using the below two identities in the above step

\csc ^{2} \theta=1+\tan ^{2} \theta

\sec ^{2} \theta=1+\cot ^{2} \theta

=\left(1+\tan ^{2} \theta+1+\cot ^{2} \theta+5\right)=\tan ^{2} \theta+\cot ^{2} \theta+7=R . H . S

Therefore L.H.S = R.H.S

\bold{(\sin \theta+\csc \theta)^{2}+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta}

Hence, Proved.  

Answered by SapnaDashoni
141

Step-by-step explanation:

I hope this ans will help u..

Attachments:
Similar questions