Math, asked by neeturathore, 1 year ago

sin theta+costheta/sintheta -costheta+sintheta-costheta/sintheta+costheta=2sec2/tan2 theta -1

Answers

Answered by saifianas87p3yv1c
7

Answer:

Step-by-step explanation:

It will definitely clear your all doubts regarding this question.

Don't forget to mark as brainliest

Answered by mysticd
14

Answer:

 \frac{sin\theta+cos\theta}{sin\theta-cos\theta}+\frac{sin\theta-cos\theta}{sin\theta+cos\theta}\\=\frac{2sec^{2}\theta}{tan^{2}\theta-1}

Step-by-step explanation:

LHS = \frac{sin\theta+cos\theta}{sin\theta-cos\theta}+\frac{sin\theta-cos\theta}{sin\theta+cos\theta}

=\frac{(sin^\theta+cos\theta)^{2}+(sin\theta-cos\theta)^{2}}{(sin\theta-cos\theta)(sin\theta+cos\theta)}

=\frac{2(sin^{2}\theta+cos^{2}\theta)}{(sin^{2}\theta-cos^{2}\theta)}

=\frac{2\times 1}{(sin^{2}\theta-cos^{2}\theta)}

 \boxed { Since , \: sin^{2}\theta+cos^{2}\theta = 1}

=\frac{2}{(sin^{2}\theta-cos^{2}\theta)}

 Divide \: numerator \: and \: denominator \\by \: cos^{2}\theta,we\:get

=\frac{\frac{2}{cos^{2}\theta}}{\frac{sin^{2}\theta}{cos^{2}\theta}-\frac{cos^{2}\theta}{cos^{2}\theta}}

= \frac{2sec^{2}\theta}{tan^{2}\theta-1}\\=RHS

Therefore.,

 \frac{sin\theta+cos\theta}{sin\theta-cos\theta}+\frac{sin\theta-cos\theta}{sin\theta+cos\theta}\\=\frac{2sec^{2}\theta}{tan^{2}\theta-1}

•••♪

Similar questions