Math, asked by bhavanarbhavanar938, 20 days ago

sin theta/cot theta+cosec theta + 2+sin theta/cot theta-cosec theta​

Answers

Answered by mathdude500
2

Appropriate Question :-

Prove that,

\rm \: \dfrac{sin\theta }{cot\theta  + cosec\theta }  = 2 + \dfrac{sin\theta }{cot\theta  - cosec\theta}  \\

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: \dfrac{sin\theta }{cot\theta  + cosec\theta }  \\

We know,

\boxed{\sf{  \:cot\theta  =  \frac{cos\theta }{sin\theta } \: }} \\

and

\boxed{\sf{  \:cosec\theta  =  \frac{1}{sin\theta }  \: }} \\

So, on substituting these Identities, we get

\rm \: =  \: \dfrac{sin\theta }{\dfrac{cos\theta }{sin\theta }  + \dfrac{1}{sin\theta } }  \\

\rm \: =  \: \dfrac{sin\theta }{\dfrac{cos\theta  + 1}{sin\theta }}  \\

\rm \: =  \: \dfrac{ {sin}^{2}\theta }{1 + cos\theta }  \\

We know,

\boxed{\sf{  \: {sin}^{2}\theta  +  {cos}^{2}\theta  = 1 \: }} \\

So, using this identity, we get

\rm \: =  \: \dfrac{1 -  {cos}^{2}\theta  }{1 + cos\theta }  \\

\rm \: =  \: \dfrac{(1 -  cos\theta)(1 + cos\theta )  }{1 + cos\theta }  \\

\rm \: =  \: 1 - cos\theta  \:  \\

So,

\rm \:  \:\boxed{\sf{  \:  \: \rm \: \dfrac{sin\theta }{cot\theta  + cosec\theta } = 1 -cos\theta  \:  \:   }} -  -  - (1)\\

Now, Consider RHS

\rm \: 2 + \dfrac{sin\theta }{cot\theta  - cosec\theta}  \\

can be rewritten as

\rm \: =  \:2 +  \dfrac{sin\theta }{\dfrac{cos\theta }{sin\theta }  -  \dfrac{1}{sin\theta } }  \\

\rm \: =  \:2 +  \dfrac{sin\theta }{\dfrac{cos\theta  - 1}{sin\theta }}  \\

\rm \: =  \: 2 + \dfrac{ {sin}^{2}\theta }{cos\theta  - 1}  \\

\rm \: =  \: 2 + \dfrac{1 -  {cos}^{2}\theta }{cos\theta  - 1}  \\

\rm \: =  \: 2 -  \dfrac{(1 - cos\theta )(1 + cos\theta )}{1 - cos\theta}  \\

\rm \: =  \: 2 - (1 + cos\theta ) \\

\rm \: =  \: 2 - 1  -  cos\theta  \\

\rm \: =  \: 1  -  cos\theta  \\

So,

\rm\implies \:\boxed{\sf{  \:\rm \: 2 + \dfrac{sin\theta }{cot\theta  - cosec\theta}   = 1 - cos\theta }} -  -  - (2) \: \\

From equation (1) and (2), we concluded that

\boxed{\sf{  \:  \:  \:  \:\rm \: \dfrac{sin\theta }{cot\theta  + cosec\theta }  = 2 + \dfrac{sin\theta }{cot\theta  - cosec\theta}   \:  \:  \:  \:  \: }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by maheshtalpada412
0

Step-by-step explanation:

 \color{red}\tt \leadsto\dfrac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}=2+\dfrac{\sin \theta}{\cot \theta-\operatorname{cosec} \theta}  \:  \:  \:  is \:  \:  true

 \tt \color{navy} \leadsto \: if  \quad \dfrac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}-\dfrac{\sin \theta}{\cot \theta-\operatorname{cosec} \theta}=2 \:  \:  \: is \:  \:  \:  \:  true

 \tt \color{blue} \leadsto \quad \: i.e. \:  \:  \:  if  \:  \:  \:  \cfrac{\sin \theta(\cot \theta-\operatorname{cosec} \theta)-\sin \theta(\cot \theta+\operatorname{cosec} \theta)}{\cot ^{2} \theta-\operatorname{cosec}^{2} \theta}=2 \:  \:  \: is  \:  \:  \:  \: true

 \tt \color{purple} \leadsto \quad \: i.e.  \:  \: if   \:  \:  \: \dfrac{-2 \sin \theta \operatorname{cosec} \theta}{-1}=2  \:  \:  \:  is  \:  \:  \: true

 \tt \color{cyan} \leadsto i.e. \:  \:  \:  \:  if   \:  \:  \:  \: 2=2 ,  \:  \:  \:  \: which \:  \:  \:  is \:  \:  \:  true.

Similar questions