Math, asked by shankaramurthyshanka, 11 months ago

Sin theta divided by 1 - cos theta is equal to cosec theta + cot theta.​

Answers

Answered by crystalch24092
2

Question:

sin∅/ (1-cos∅) = cosec∅ + cot∅

Solution:

∵       LHS = \frac{sin∅}{(1-cos∅)}

=>     LHS = \frac{sin∅(1+cos∅)}{(1-cos∅) (1+cos∅)}

=>     LHS = \frac{sin∅+cos∅sin∅}{(1-cos∅^{2} )}

=>     LHS = \frac{sin∅}{1-cos∅^{2} } +\frac{cos∅sin∅}{1-cos∅^{2}}

=>     LHS = sin∅/sin²∅ + cos∅sin∅/sin²∅          [∵1-cos²∅= sin²∅]

=>     LHS = 1/sin∅ + cos∅/sin∅

=>     LHS = cosec∅ + cot∅                  [∵1/sin∅=cosec∅ and cos∅/sic∅=tan∅]

∴     LHS = RHS

Hence, Proved

                                                                                   

Hope this helped you..

Answered by talasilavijaya
0

Answer:

\frac{sin\theta }{1-cos\theta} =cosec\theta+cot\theta

Step-by-step explanation:

Given \frac{sin\theta }{1-cos\theta} =cosec\theta+cot\theta

Consider the left hand side of the equation,

\frac{sin\theta }{1-cos\theta}

Dividing and multiplying with {1+cos\theta}

=\frac{(sin\theta)(1+cos\theta) }{(1-cos\theta)(1+cos\theta)}

=\frac{(sin\theta(1+ cos\theta) }{(1-cos^{2} \theta)}

Using the trigonometric identity, sin^{2} \theta}+cos^{2} \theta=1

=\frac{sin\theta(1+ cos\theta) }{(sin^{2} \theta)}

=\frac{1+ cos\theta }{sin \theta}

=\frac{1 }{sin \theta}+\frac{cos\theta }{sin \theta}

Using the relations,  \frac{1 }{sin \theta}= cosec \theta  ~~\&~~\frac{cos\theta }{sin \theta}=cot \theta

=cosec \theta}+cot\theta

Therefore, \frac{sin\theta }{1-cos\theta} =cosec\theta+cot\theta

Similar questions