Math, asked by dbitu636, 2 months ago

sin theta divided by cos theta equal to one, then theta equal to---------?​

Attachments:

Answers

Answered by stranger0000
2

Answer :

SinΘ/CosΘ = 1

Therefore, SinΘ = CosΘ

This us possible only when Θ = 45°

Answered by hemanji2007
7

Topic:-

Trigonometry

Question:-

 \frac{   \sin \theta }{   \cos \theta  }  = 1 \\ then \\  \theta  =

Solution:-

 \frac{ sin \theta}{   \cos  \theta  }  = 1

Now take value of theta as 30,45,60,90

if \theta \: value \: is \: 45 \: \\  \\  \frac{ \ \sin(45) }{ \cos(45) }  =  \frac{1}{  \frac{ \sqrt{2} }{ \frac{1}{ \sqrt{2} } }  }  \\  \\ then \\  \frac{ \sin(45) }{ \cos(45) }  = 1 \\  \\ so \: theta = 45

Hence proved//

Know More:-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions