Math, asked by ranjanakri1977, 5 hours ago

sin theta is equal to 2 then thita = ?​

Answers

Answered by senboni123456
4

Answer:

Step-by-step explanation:

We have,

\sin(\theta)=2

\bf{\mapsto\,\,If\,\,\theta\,\,is\,\,real\,:}

Then, no value of θ is satisfied by the above equation, because or real θ, sin(θ) ∈ [-1, 1]

\bf{\mapsto\,\,If\,\,\theta\,\,is\,\,complex\,:}

\sf{sin(\theta)=2}

\sf{\implies\,\dfrac{e^{\displaystyle\,i\,\theta}-e^{\displaystyle\,-i\,\theta}}{2\,i}=2}

\sf{\implies\,e^{\displaystyle\,i\theta}-e^{\displaystyle\,-i\theta}=4\,i}

\sf{\implies\,e^{\displaystyle\,i\theta}-\dfrac{1}{e^{\displaystyle\,i\theta}}=4\,i}

\sf{\implies\,\dfrac{e^{\displaystyle\,2i\theta}-1}{e^{\displaystyle\,i\theta}}=4\,i}

\sf{\implies\,e^{\displaystyle\,2i\theta}-1=4\,i\,e^{\displaystyle\,i\theta}}

\sf{\implies\,e^{\displaystyle\,2i\theta}-4\,i\,e^{\displaystyle\,i\theta}-1=0}

\sf{\implies\,\left(e^{\displaystyle\,i\theta}\right)^2-4\,i\,\left(e^{\displaystyle\,i\theta}\right)-1=0}

\sf{\implies\,e^{\displaystyle\,i\theta}=\dfrac{-(-4i)\pm\sqrt{(-4i)^2-4\cdot1\cdot(-1)}}{2\cdot1}}

\sf{\implies\,e^{\displaystyle\,i\theta}=\dfrac{4i\pm\sqrt{-16+4}}{2}}

\sf{\implies\,e^{\displaystyle\,i\theta}=\dfrac{4i\pm\sqrt{-12}}{2}}

\sf{\implies\,e^{\displaystyle\,i\theta}=\dfrac{4i\pm2\sqrt{3}\,i}{2}}

\sf{\implies\,e^{\displaystyle\,i\theta}=2i\pm\,i\sqrt{3}}

\sf{\implies\,e^{\displaystyle\,i\theta}=\left(2+\sqrt{3}\right)i\,\,\,\,\,\,or\,\,\,\,\,\,e^{\displaystyle\,i\theta}=\left(2-\sqrt{3}\right)i}

Taking logarithm

\sf{\implies\,\ln\left\{e^{\displaystyle\,i\theta}\right\}=\ln\left\{\left(2+\sqrt{3}\right)i\right\}\,\,\,\,\,\,or\,\,\,\,\,\,\ln\left\{e^{\displaystyle\,i\theta}\right\}=\ln\left\{\left(2-\sqrt{3}\right)i\right\}}

\sf{\implies\,i\theta=\ln\left\{\left(2+\sqrt{3}\right)i\right\}\,\,\,\,\,\,or\,\,\,\,\,\,i\theta=\ln\left\{\left(2-\sqrt{3}\right)i\right\}}

Now, consider the proposition

\bf{The\,\,\,logarithm\,\,\,of\,\,\,a\,\,\,complex\,\,\,number\,:}

\tt{\ln(z)=\ln\left(|z|\,e^{\displaystyle\,i(\alpha+2n\pi)}\right)}

Where α is the argument of z and n ∈ \mathbb{Z}

\tt{\implies\,\ln(z)=\ln|z|+\ln\left(e^{\displaystyle\,i(\alpha+2n\pi)}\right)}

\tt{\implies\,\ln(z)=\ln|z|+i(\alpha+2n\pi)}

Now,

\sf{\implies\,\theta=\dfrac{1}{i}\cdot\ln\left\{\left(2+\sqrt{3}\right)i\right\}\,\,\,\,\,\,or\,\,\,\,\,\,\theta=\dfrac{1}{i}\cdot\ln\left\{\left(2-\sqrt{3}\right)i\right\}}

\sf{\implies\,\theta=\dfrac{i}{i^2}\cdot\ln\left\{\left(2+\sqrt{3}\right)i\right\}\,\,\,\,\,\,or\,\,\,\,\,\,\theta=\dfrac{i}{i^2}\cdot\ln\left\{\left(2-\sqrt{3}\right)i\right\}}

\sf{\implies\,\theta=-i\cdot\ln\left\{\left(2+\sqrt{3}\right)i\right\}\,\,\,\,\,\,or\,\,\,\,\,\,\theta=-i\cdot\ln\left\{\left(2-\sqrt{3}\right)i\right\}}

\sf{\implies\,\theta=-i\cdot\left[\ln\left(2+\sqrt{3}\right)+i\left\{\dfrac{\pi}{2}+2n\pi\right\}\right]\,\,\,\,\,\,or\,\,\,\,\,\,\theta=-i\cdot\left[\ln\left(2-\sqrt{3}\right)+i\left\{\dfrac{\pi}{2}+2m\pi\right\}\right]}where, m, n are integers

\sf{\implies\,\theta=-i\,\ln\left(2+\sqrt{3}\right)-i^2\left\{\dfrac{\pi}{2}+2n\pi\right\}\,\,\,\,\,\,or\,\,\,\,\,\,\theta=-i\,\ln\left(2-\sqrt{3}\right)-i^2\left\{\dfrac{\pi}{2}+2m\pi\right\}}

\sf{\implies\,\theta=-i\,\ln\left(2+\sqrt{3}\right)+\left\{\dfrac{\pi}{2}+2n\pi\right\}\,\,\,\,\,\,or\,\,\,\,\,\,\theta=-i\,\ln\left(2-\sqrt{3}\right)+\left\{\dfrac{\pi}{2}+2m\pi\right\}}

\sf{\implies\,\theta=\dfrac{\pi}{2}+2n\pi-i\,\ln\left(2+\sqrt{3}\right)\,\,\,\,\,\,or\,\,\,\,\,\,\theta=\dfrac{\pi}{2}+2m\pi-i\,\ln\left(2-\sqrt{3}\right)}

\sf{\implies\,\theta=(4n+1)\dfrac{\pi}{2}-i\,\ln\left(2+\sqrt{3}\right)\,\,\,\,\,\,or\,\,\,\,\,\,\theta=(4m+1)\dfrac{\pi}{2}-i\,\ln\left(2-\sqrt{3}\right)}

Similar questions