Math, asked by rishirajput49, 1 year ago

sin theta is equal to a by b find sec theta + tan theta in terms of a and b ​

Attachments:

Answers

Answered by jobbharathi2
2

Answer:

Step-by-step explanation:

Given

Sin theta=a÷b

Take a right angle triangle

Use pythogerous therom

b2-a2=x2

X=root b2-a2

Sectheta= hyp÷adj

Sectheta=b÷root b2-a2

Tantheta=opp÷adj

tantheta=a÷root b2-a2

Sectheta+tantheta=a+b÷root b2-a2


rishirajput49: wrong answer
Answered by aquialaska
5

Answer:

sec\,\theta+tan\,\theta=\sqrt{\frac{b+a}{b-a}}

Step-by-step explanation:

Given:

sin\,\theta=\frac{a}{b}

To find: sec\,\theta+tan\,\theta

We know that,

sin² x + cos² x = 1

cos\,\theta=\sqrt{1-sin^2\,\theta}

cos\,\theta=\sqrt{1-(\frac{a}{b})^2}

cos\,\theta=\sqrt{(\frac{b^2-a^2}{b^2}}

cos\,\theta=\frac{\sqrt{b^2-a^2}}{b}

\implies sec\,\theta=\frac{1}{cos\,\theta}=\frac{b}{\sqrt{b^2-a^2}}

\implies tan\,\theta=\frac{sin\,\theta}{cos\,\theta}=\frac{a}{\sqrt{b^2-a^2}}

Now,

sec\,\theta+tan\,\theta

=\frac{b}{\sqrt{b^2-a^2}}+\frac{a}{\sqrt{b^2-a^2}}

=\frac{b+a}{\sqrt{(b-a)(b+a)}}

=\frac{\sqrt{b+a}\sqrt{b+a}}{\sqrt{b-a}\sqrt{b+a}}

=\frac{\sqrt{b+a}}{\sqrt{b-a}}

=\sqrt{\frac{b+a}{b-a}}

Therefore, sec\,\theta+tan\,\theta=\sqrt{\frac{b+a}{b-a}}

Similar questions