Math, asked by reshmareshu7, 11 months ago

sin theta minus cos theta + 1 / sin theta + cos-theta -1 = 1/ sec theta -tan theta

Answers

Answered by Anonymous
33

Solution:

\sf{\implies \dfrac{\sin \theta - \cos \theta + 1}{\sin \theta + \cos \theta - 1}= \dfrac{1}{\sec \theta - \tan \theta}}

We take LHS part,

\sf{\implies \dfrac{\sin \theta - \cos \theta + 1}{\sin \theta + \cos \theta - 1}}

Now we will do Rationalize,

\sf{\implies \dfrac{\sin \theta - \cos \theta + 1}{\sin \theta + \cos \theta - 1}\times \dfrac{\sin \theta + \cos \theta + 1}{\sin \theta + \cos \theta + 1}}

\sf{\implies \dfrac{\sin^{2}\theta + \sin \theta \cos \theta + \sin \theta - \sin \theta \cos \theta -\cos^{2} \theta - \cos \theta + \sin \theta +\cos\theta +1}{(\sin \theta +\cos \theta)^{2}-1}}

\sf{\implies \dfrac{2\sin^{2}\theta + 2\sin \theta}{(\sin^{2}\theta + \cos^{2}\theta)+2\sin\theta \cos \theta -1}}

\sf{\implies \dfrac{2\sin^{2}\theta + 2\sin \theta}{1+2\sin \theta \cos \theta-1}}

\sf{\implies \dfrac{2\sin \theta(1+\sin\theta)}{2\sin\theta \cos\theta}}

\sf{\implies \dfrac{1+\sin\theta}{\cos\theta}}

\sf{\implies \sec\theta+\tan \theta}

\sf{\implies \sec \theta +\tan \theta \times \dfrac{\sec \theta-\tan \theta}{\sec \theta -\tan \theta}}

\sf{\implies \dfrac{(\sec^{2}\theta-\tan^{2}\theta)}{\sec \theta -\tan\theta}}

\sf{\implies \dfrac{1}{\sec\theta-\tan\theta}}

Hence Proved!!!

Answered by MarshmellowGirl
21

✿━━━━@♥ℳg━━━━✿

\boxed{Explained\:Answer}

______________________________

✿━━━━@♥ℳg━━━━✿

Refer to ATTATCHMENT.....

Attachments:
Similar questions