Math, asked by sauravjha204, 11 months ago

Sin theta minus cos theta + 1 / sin theta + cos theta minus 1 is equal to 1 / secant theta minus tan theta

Answers

Answered by Anonymous
32

Question:

To Prove :

{\sf{ {\dfrac{sin \theta - cos \theta + 1}{sin \theta + cos \theta - 1}} = {\dfrac{1}{sec \theta - tan \theta}} }}

Step-by-step explanation:

L.H.S. = {\sf{\ \ {\dfrac{sin \theta - cos \theta + 1}{sin \theta + cos \theta - 1}} }}

_______________________________

Dividing the numerator and denominator with cos θ, so as to get tan θ and sec θ.

\implies{\sf{ {\dfrac{ {\dfrac{sin \theta - cos \theta + 1}{cos \theta}} }{ {\dfrac{sin \theta + cos \theta - 1}{cos \theta }} }} }}

_______________________________

We can write this as :

\implies{\sf{ {\dfrac{ {\dfrac{sin \theta}{cos \theta}} - {\dfrac{cos \theta}{cos \theta}} + {\dfrac{1}{cos \theta}} }{ {\dfrac{sin \theta}{cos \theta}} + {\dfrac{cos \theta}{cos \theta}} - {\dfrac{1}{cos \theta}} }} }}

_______________________________

{\boxed{\tt{Identity \ : \ {\dfrac{sin \theta}{cos \theta}} = tan \theta}}}

{\boxed{\tt{Identity \ : \ {\dfrac{1}{cos \theta}} = sec \theta}}}

_______________________________

\implies{\sf{ {\dfrac{tan \theta - 1 + sec \theta}{tan \theta + 1 - sec \theta}} }}

_______________________________

Rearranging the terms in denominator.

\implies{\sf{ {\dfrac{tan \theta - 1 + sec \theta}{tan \theta - sec \theta + 1}} }}

_______________________________

{\boxed{\tt{Identity \ : \ tan^2 \theta + 1 = sec^2 \theta}}}

{\tt{From \ this, \ we \ get \ [ 1 = sec^2 \theta - tan^2 \theta ] }}

_______________________________

Putting this value of 1 in the denominator.

\implies{\sf{ {\dfrac{tan \theta - 1 + sec \theta}{tan \theta - sec \theta + (sec^2 \theta - tan^2 \theta)}}}}

_______________________________

We can write this as :

\implies{\sf{ {\dfrac{tan \theta - 1 + sec \theta}{tan \theta - sec \theta + [ - (tan^2 \theta - sec^2 \theta)]}}}}

_______________________________

\implies{\sf{ {\dfrac{tan \theta - 1 + sec \theta}{tan \theta - sec \theta - (tan^2 \theta - sec^2 \theta)}}}}

_______________________________

{\boxed{\tt{Identity \ : \ a^2 - b^2 = (a - b)(a + b)}}}

{\tt{Here, \ a = tan \theta , \ b = sec \theta}}

_______________________________

\implies{\sf{ {\dfrac{tan \theta - 1 + sec \theta}{tan \theta - sec \theta - (tan \theta - sec \theta)(tan \theta + sec \theta)}}}}

_______________________________

Taking (tan θ - sec θ) common from the denominator.

\implies{\sf{ {\dfrac{tan \theta - 1 + sec \theta }{ tan \theta - sec \theta [ 1 - (tan \theta + sec \theta)] }} }}

_______________________________

\implies{\sf{ {\dfrac{tan \theta - 1 + sec \theta }{ tan \theta - sec \theta ( 1 - tan \theta - sec \theta) }} }}

_______________________________

We can write this as :

\implies{\sf{ {\dfrac{tan \theta - 1 + sec \theta }{ tan \theta - sec \theta [ - (tan \theta + sec \theta - 1) }} }}

_______________________________

Cancelling (tan θ + sec θ - 1) from both numerator and denominator.

\implies{\sf{ {\dfrac{1}{(tan \theta - sec \theta)(- 1)}}}}

_______________________________

\implies{\sf{ {\dfrac{1}{sec \theta - tan \theta}} }}

_______________________________

= R.H.S.

Hence, verified.

Similar questions