Math, asked by hariprasad33, 1 year ago

sin theta minus cos theta by sin theta + cos theta + sin theta + cos theta whole divided by sin theta minus cos theta is equal to 2 by 2 sin squared theta minus one

Answers

Answered by vaduz
89

Answer:


Step-by-step explanation:

given sinα -cosα /sinα +cosα +sin α +cosα/sin α -cos α =2/2sin²-1

L.H.S.

take lcm

⇒[( sinα -cosα)²+ ( sinα +cosα)²]/[( sinα -cosα)( sinα +cosα)]

⇒2(sin²α+cos²α) /(sin²α-cos²α) [ ∵ (a+b)²+(a-b)²= 2(a²+b²)]

⇒2/(cos 2α) [ ∵ sin²α-cos²α=cos 2α]

⇒2/ 2sin²α-1 [ ∵ cos 2α= 2sin²α-1 ]

L.H.S.=R.H.S.

Answered by mahak3237
8

sinθ−cosθ

sinθ+cosθ

+

sinθ+cosθ

sinθ−cosθ

=\frac{{(sin\theta+cos\theta)}^2+{(sin\theta-cos\theta)}^2}{(sin\theta-cos\theta)(sin\theta+cos\theta)}=

(sinθ−cosθ)(sinθ+cosθ)

(sinθ+cosθ)

2

+(sinθ−cosθ)

2

=\frac{{(sin^2\theta+cos^2\theta+2sin\theta.cos\theta)}+{(sin^2\theta+cos^2\theta-2sin\theta.cos\theta)}}{(sin^{2}\theta-cos^{2}\theta)}=

(sin

2

θ−cos

2

θ)

(sin

2

θ+cos

2

θ+2sinθ.cosθ)+(sin

2

θ+cos

2

θ−2sinθ.cosθ)

=\frac{{(1+2sin\theta.cos\theta)}+{(1-2sin\theta.cos\theta)}}{(sin^{2}\theta-cos^{2}\theta)}=

(sin

2

θ−cos

2

θ)

(1+2sinθ.cosθ)+(1−2sinθ.cosθ)

=\frac{2}{(sin^{2}\theta-cos^{2}\theta)}=

(sin

2

θ−cos

2

θ)

2

=\frac{2}{sin^{2}\theta-(1-sin^{2}\theta)}=

sin

2

θ−(1−sin

2

θ)

2

=\frac{2}{sin^{2}\theta-1+sin^{2}\theta}=

sin

2

θ−1+sin

2

θ

2

=\frac{2}{2sin^{2}\theta-1}=

2sin

2

θ−1

2

Hope It helped you

Similar questions