Math, asked by Cococool, 4 months ago


sin theta/sec theta + 1 + sin theta / sec theta -1= 2cot theta​

Answers

Answered by Anonymous
28

TO PROVE :-

 \\  \sf \:  \dfrac{sin\theta}{sec\theta + 1}  +  \dfrac{sin\theta}{sec\theta - 1}  = 2cot \theta  \\  \\ \\

SOLUTION :-

We have ,

 \\ \sf \:  L.H.S = \dfrac{sin}{sec + 1}  +  \dfrac{sin}{sec - 1}  \\

Cross multiplying,

 \\ \implies  \sf \:  \dfrac{sin(sec - 1) + sin(sec + 1)}{(sec + 1)(sec - 1)}  \\

In denominator,

(a+b)(a-b) = a² - b²

  • a = secø
  • b = 1

Putting values,

 \\  \implies \sf \:  \dfrac{sin\theta.sec\theta  -  \cancel{sin\theta}+ sin\theta.sec\theta +  \cancel{sin\theta}}{ {sec}^{2}\theta -  {1}^{2}  }  \\  \\  \implies \sf \:  \dfrac{2sin\theta.sec\theta}{ {sec}^{2}\theta - 1 }   \\

 \\ \bigstar \boxed{ \bf \: 1 +  {tan}^{2}\theta =  {sec}^{2} \theta } \\  \\  \therefore \bf \:   \underline{{sec}^{2}\theta  - 1 =  {tan}^{2} \theta}  \\   \\

Using above formula ,

 \\  \implies \sf \:  \dfrac{2sin\theta.sec\theta}{ {tan}^{2}\theta }  \\

 \\ \bigstar \boxed{ \bf \:sec\theta =  \dfrac{1}{cos\theta}  } \:   \:  \:  \:  \:    \\

Using above formula,

 \\  \implies \sf \:  \dfrac{2 \times sin\theta \times  \dfrac{1}{cos\theta} }{  {tan}^{2}\theta  }   \\

 \\ \bigstar \boxed{ \bf \: \dfrac{sin\theta}{cos\theta}   = tan\theta} \\

Using above formula ,

 \\  \implies \sf \:  \dfrac{2tan\theta}{ { {tan}^{2}\theta } }   \\  \\  \implies \sf \:  \dfrac{2}{tan\theta}  \\

 \\  \bigstar\boxed{ \bf \: tan\theta =  \dfrac{1}{cot\theta} } \\

 \\  \implies \sf \: 2cot\theta \:  \:  = R.H.S \:  \:  \:  \:  \:  \:  \:  \:  \: (verified) \\ \\ \\

MORE FORMULAS :-

  \\  \dag \tt \: \:  \:   {sin}^{2}\theta  +  {cos}^{2}\theta  = 1 \\  \\  \dag \tt \:  \:  \:  1 +  {tan}^{2}\theta  =  {cosec}^{2}\theta  \\  \\  \dag \tt \:  \:  \: sin2\theta = 2sin\theta.cos\theta \\  \\  \dag \tt \:  \:  \: cos2\theta =  {cos}^{2}\theta  -  {sin}^{2}\theta

Similar questions