(sin theta + sec theta) ^2+(cos theta+cosec theta) ^2=(1+cosec theta sec theta
Answers
To prove:-
- (sinθ +secθ)² + (cosθ+cosecθ)²=(1+cosecθ.secθ)
Proof:-
LHS = (sinθ +secθ)² + (cosθ+cosecθ)²
We know :
❥ Secθ = 1/cosθ
❥ Cosec θ = 1/sinθ
❥ Sin²θ + cos²θ = 1
⇒ (sinθ+1/cos θ)² + (cosθ+1/sinθ)²
⇒ (sinθcosθ+1 / cosθ )² + (sinθcosθ+1 / sinθ )²
⇒ (sinθcosθ+1 )² ( 1/ cos²θ + 1/ sin²θ )
⇒ ( sin²θcos²θ + 2sinθcosθ +1 )[sin²θ + cos²θ / sin²θcos²θ ]
⇒ (sin²θcos²θ / sin²θcos²θ)+ (2sinθcosθ/sin²θcos²θ)+(1 /sin²θcos²θ )
⇒ 1 + 2 secθcosecθ + 2sec²θ cosec²θ
⇒ (1 + secθcosecθ)²
= R.H.S.
HENCE PROVED !
________________
To prove:-
(sinθ +secθ)² + (cosθ+cosecθ)²=(1+cosecθ.secθ)
Proof:-
LHS = (sinθ +secθ)² + (cosθ+cosecθ)²
We know :
❥ Secθ = 1/cosθ
❥ Cosec θ = 1/sinθ
❥ Sin²θ + cos²θ = 1
⇒ (sinθ+1/cos θ)² + (cosθ+1/sinθ)²
⇒ (sinθcosθ+1 / cosθ )² + (sinθcosθ+1 / sinθ )²
⇒ (sinθcosθ+1 )² ( 1/ cos²θ + 1/ sin²θ )
⇒ ( sin²θcos²θ + 2sinθcosθ +1 )[sin²θ + cos²θ / sin²θcos²θ ]
⇒ (sin²θcos²θ / sin²θcos²θ)+ (2sinθcosθ/sin²θcos²θ)+(1 /sin²θcos²θ )
⇒ 1 + 2 secθcosecθ + 2sec²θ cosec²θ
⇒ (1 + secθcosecθ)²
= R.H.S.
HENCE PROVED !
________________