(sin theta + sec theta)^2 + (cos theta + cosec theta )^2=(1+sec theta cosec theta)^2
Answers
Answered by
4
LHS⇒sin²Ф+2sinФsecФ+sec²Ф+cos²Ф+2cosФcosecФ+cosec²Ф
=sin²Ф+cos²Ф+1/cos²Ф+1/sin²Ф+2×sinФ×1/cosФ+2×cosФ×1/sinФ
=1 + 1/sin²Фcos²Ф + 2sinФ/cosФ + 2cos/sinФ
=1 + 1/sin²Фcos²Ф + 2(sin²Ф+cos²Ф)/sinФcosФ
=1 + 1/sin²Ф × cos²Ф + 2(1/sinФ × 1/cosФ)
=1 + cosec²Фsec²Ф + 2cosecФsecФ
RHS⇒1² + 2cosecФsecФ + cosec²Фsec²Ф
LHS = RHS
hence proved
=sin²Ф+cos²Ф+1/cos²Ф+1/sin²Ф+2×sinФ×1/cosФ+2×cosФ×1/sinФ
=1 + 1/sin²Фcos²Ф + 2sinФ/cosФ + 2cos/sinФ
=1 + 1/sin²Фcos²Ф + 2(sin²Ф+cos²Ф)/sinФcosФ
=1 + 1/sin²Ф × cos²Ф + 2(1/sinФ × 1/cosФ)
=1 + cosec²Фsec²Ф + 2cosecФsecФ
RHS⇒1² + 2cosecФsecФ + cosec²Фsec²Ф
LHS = RHS
hence proved
Similar questions