English, asked by Chandukarnam, 1 year ago

Sin theta + sin 2 theta + sin 3 theta equal to zero

Answers

Answered by aayusharora045
3

Answer:

Explanation:

sin θ + sin 2θ + sin 3θ = 0

sin θ + 2sinθcosθ+ (3sinθ-4sin^3θ) =0

sin θ + 2sinθcosθ + sinθ( 3-4sin^2θ)=0

sinθ( 1+2cosθ+ (3-4sin^2θ)=0

sinθ(1+2cosθ +3 -4(1-cos^2θ)=0

sinθ(4-4+2cosθ+4cos^2θ)=0

sinθ(2cosθ+4cos^2θ)=0

sinθ= 0

sinθ = sin 0

θ= nπ

4cos^2θ+2cosθ+0=0

According to quadratic formula,

D= b^2-4ac

D= (2)^2-4(4)(0)

D= 4

cosθ= (-2±2)/8

cos θ= 0 or -1/2

If, cosθ= 0,

Cosθ= cos π/2

θ= (2n+1)π/2

If, cosθ= -1/2

Cosθ= Cos(π-π/3)

Cosθ= 2nπ± Cos(2π/3)

θ= 6nπ/3±2π/3.

Hope you like my answer

Please mark my answer as brainliest. Thank you . GOD bless you!!. All the best!!

Answered by SteffiPaul
2

Therefore the solution for sin θ + sin 2θ + sin 3θ = 0 is θ= nπ or θ = nπ + π/2 or θ = 2nπ ± 2π/3 Where n = 0, ±1, ±2, ±3.....

Given:

sin θ + sin 2θ + sin 3θ = 0

To Find:

General solution of the given trigonometric function, sin θ + sin 2θ + sin 3θ = 0

Solution:

The given question can be solved very easily as shown below.

Given a trigonometric function,

⇒ sin θ + sin 2θ + sin 3θ = 0

                [ ∵ sin 2θ = 2 sinθcosθ and sin 3θ = 3sinθ-4sin³θ ]

⇒ sin θ + 2sinθcosθ+ (3sinθ-4sin³θ) =0

⇒ sin θ + 2sinθcosθ + sinθ( 3-4sin²θ)=0

⇒ sinθ( 1+2cosθ+ (3-4sin²θ)=0

⇒ sinθ(1+2cosθ +3 -4(1-cos²θ)=0

⇒ sinθ(4-4+2cosθ+4cos²θ)=0

⇒ sinθ(2cosθ+4cos²θ)=0

⇒ sinθ= 0 ⇒ θ= nπ

Or

⇒ 4cos²θ+2cosθ=0

⇒ cosθ (4cosθ + 2 )  = 0

⇒ cosθ = 0 Or (4cosθ + 2 ) = 0

⇒ θ = nπ + π/2 Or θ = 2nπ ± 2π/3

Where n = 0, ±1, ±2, ±3.....

Therefore the solution for sin θ + sin 2θ + sin 3θ = 0 is θ= nπ or θ = nπ + π/2 or θ = 2nπ ± 2π/3 Where n = 0, ±1, ±2, ±3.....

#SPJ2

Similar questions