Math, asked by jainvanshika0522, 5 days ago

sin theta / sin (90- theta) + cos theta/cos (90-theta) = sec theta × cosec theta ​

Answers

Answered by varadad25
4

Answer:

\displaystyle{\boxed{\red{\sf\:\dfrac{\sin\:\theta}{\sin\:(\:90^{\circ}\:-\:\theta\:)}\:+\:\dfrac{\cos\:\theta}{\cos\:(\:90^{\circ}\:-\:\theta\:)}\:=\:\sec\:\theta\:\times\:cosec\:\theta\:}}}

Step-by-step-explanation:

We have given a trigonometric identity.

We have to prove that identity.

The given trigonometric identity is

\displaystyle{\sf\:\dfrac{\sin\:\theta}{\sin\:(\:90^{\circ}\:-\:\theta\:)}\:+\:\dfrac{\cos\:\theta}{\cos\:(\:90^{\circ}\:-\:\theta\:)}\:=\:\sec\:\theta\:\times\:cosec\:\theta}

Now,

\displaystyle{\sf\:\dfrac{\sin\:\theta}{\sin\:(\:90^{\circ}\:-\:\theta\:)}\:+\:\dfrac{\cos\:\theta}{\cos\:(\:90^{\circ}\:-\:\theta\:)}\:=\:\sec\:\theta\:\times\:cosec\:\theta}

\displaystyle{\sf\:LHS\:=\:\dfrac{\sin\:\theta}{\sin\:(\:90^{\circ}\:-\:\theta\:)}\:+\:\dfrac{\cos\:\theta}{\cos\:(\:90^{\circ}\:-\:\theta\:)}}

We know that,

\displaystyle{\boxed{\pink{\sf\:\sin\:(\:90^{\circ}\:-\:\theta\:)\:=\:\cos\:\theta\:}}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\sin\:\theta}{\cos\:\theta}\:+\:\dfrac{\cos\:\theta}{\cos\:(\:90^{\circ}\:-\:\theta\:)}}

We know that,

\displaystyle{\boxed{\blue{\sf\:\cos\:(\:90^{\circ}\:-\:\theta\:)\:=\:\sin\:\theta\:}}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\sin\:\theta}{\cos\:\theta}\:+\:\dfrac{\cos\:\theta}{\sin\:\theta\:}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\sin^2\:\theta\:+\:\cos^2\:\theta}{\cos\:\theta\:.\:\sin\:\theta}}

We know that,

\displaystyle{\boxed{\green{\sf\:\sin^2\:\theta\:+\:\cos^2\:\theta\:=\:1\:}}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{1}{\cos\:\theta\:.\:\sin\:\theta}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{1}{\cos\:\theta}\:\times\:\dfrac{1}{\sin\:\theta}}

We know that,

\displaystyle{\boxed{\orange{\sf\:\sec\:\theta\:=\:\dfrac{1}{\cos\:\theta}\:}}}

\displaystyle{\implies\sf\:LHS\:=\:\sec\:\theta\:\times\:\dfrac{1}{\sin\:\theta}}

We know that,

\displaystyle{\boxed{\purple{\sf\:cosec\:\theta\:=\:\dfrac{1}{\sin\:\theta}\:}}}

\displaystyle{\implies\sf\:LHS\:=\:\sec\:\theta\:\times\:cosec\:\theta}

\displaystyle{\sf\:RHS\:=\:\sec\:\theta\:\times\:cosec\:\theta}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:LHS\:=\:RHS\:}}}}

Hence proved!

Similar questions