Math, asked by Dharani1105, 1 month ago

sin theta -sin2theta/ 1-cos theta +cos2theta ​

Answers

Answered by mathdude500
1

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:\dfrac{sin\theta  - sin2\theta }{1 - cos\theta  + cos2\theta }

\large\underline{\sf{Solution-}}

Given Trigonometric function is

\rm :\longmapsto\:\dfrac{sin\theta  - sin2\theta }{1 - cos\theta  + cos2\theta }

can be re-arranged as

\rm \:  =  \:  \: \dfrac{sin\theta  - sin2\theta }{(1 + cos2\theta ) - cos\theta }

We know,

\boxed{ \rm{ sin2x = 2sinxcosx}}

and

\boxed{ \rm{ 1 + cos2x =  {2cos}^{2}x}}

Using these two Identities, we get

\rm \:  =  \:  \: \dfrac{sin\theta  - 2sin\theta  \: cos\theta }{ {2cos}^{2}\theta  - cos\theta  }

\rm \:  =  \:  \: \dfrac{sin\theta (1 - 2cos\theta )}{cos\theta (2cos\theta  - 1)}

\rm \:  =  \:  \: \dfrac{ -  \: sin\theta ( 2cos\theta - 1 )}{cos\theta (2cos\theta  - 1)}

\rm \:  =  \:  \:  - \dfrac{sin\theta }{cos\theta }

\rm \:  =  \:  \:  -  \: tan\theta

Hence,

\bf :\longmapsto\:\dfrac{sin\theta  - sin2\theta }{1 - cos\theta  + cos2\theta }  =  -  \: tan\theta

Additional Information :-

\boxed{ \rm{ sin2x =  \frac{2tanx}{1 +  {tan}^{2} x}}}

\boxed{ \rm{ tan2x =  \frac{2tanx}{1 -   {tan}^{2} x}}}

\boxed{ \rm{ cos2x =  {cos}^{2} x -  {sin}^{2} x}}

\boxed{ \rm{ cos2x =  1 -  {2sin}^{2} x}}

\boxed{ \rm{ cos2x =  {2cos}^{2}x - 1}}

\boxed{ \rm{ cos2x =  \frac{1 -  {tan}^{2} x}{1 +  {tan}^{2}x } }}

\boxed{ \rm{ sin3x = 3sinx -  {4sin}^{3}x}}

\boxed{ \rm{ cos3x =  {4cos}^{3}x - 3cosx}}

Similar questions