Sin theta-tan theta= a+1÷a-1 then find cos theta
Answers
Step-by-step explanation:
Answer:
\bf\:\cos\theta=\frac{a^2-1}{a^2+1}
Step-by-step explanation:
Given:
\sec\theta-\tan\theta=\frac{a+1}{a-1}........(1)
We know that
\boxed{\bf\sec^2\theta-\tan^2\theta=1}
Using
\boxed{a^2-b^2=(a-b)(a+b)}
\implies(\sec\theta-\tan\theta)(\sec\theta+\tan\theta)=1
\implies\frac{a+1}{a-1}(\sec\theta+\tan\theta)=1
\implies\sec\theta+\tan\theta=\frac{a-1}{a+1}........(2)
Adding (1) and (2), we get
2\sec\theta=\frac{a+1}{a-1}+\frac{a-1}{a+1}
2\sec\theta=\frac{(a+1)^2+(a-1)^2}{(a-1)(a+1)}
2\sec\theta=\frac{a^2+1+2a+a^2+1-2a}{a^2-1}
2\sec\theta=\frac{2a^2+2}{a^2-1}
2\sec\theta=\frac{2(a^2+1)}{a^2-1}
Cancelling 2 on both sides,
\sec\theta=\frac{a^2+1}{a^2-1}
Taking reciprocals on both sides, we get
\boxed{\bf\:\cos\theta=\frac{a^2-1}{a^2+1}}
Sin theta-tan theta= a+1÷a-1 then find cos theta
Solution:-
See the Attachment