Math, asked by prajaktavthorat1997, 1 month ago

Sin theta =
 {x}^{2}  +  \frac{1}{ {x}^{2} }
is possible or impossible for any real x ??​

Answers

Answered by Anonymous
62

 \\ \large{ \underline{ \underline{ \bigstar{ \:  \:  \:  \:  \:  \pmb{ \sf{Question \:  : }}}}}} \\  \\

  • Check if sin ( theta ) = x² + 1/x² possible

  • [ x belongs to set of real number ]

⁣⁣⠀⠀⠀⠀⠀⠀⠀⠀_____________________

 \large{ \underline{ \underline{ \bigstar{ \:  \:  \:  \:  \:  \pmb{ \sf{Hints\:  : }}}}}} \\  \\

  • We know, range of sin theta = [ -1, 1 ]

  • So that means if the minimum value of the identity is in [ -1, 1 ] , theta will exist for real value of x

⁣⁣⠀⠀⠀⠀⠀⠀⠀⠀_____________________

 \large{ \underline{ \underline{ \bigstar{ \:  \:  \:  \:  \:  \pmb{ \sf{Solution\:  : }}}}}} \\ \\ \\

◍ let's start with checking the minimum value of the given identity

 \dashrightarrow \:  \sf f(x)_{min} =  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\

 \dashrightarrow \:  \sf f(x)_{min} =   {\bigg({x}^{}   -  \frac{1}{ {x}^{} }   \bigg)}^{2} + 2

◍ Now,

 \dashrightarrow \sf{\bigg({x}^{}   -  \frac{1}{ {x}^{} }   \bigg)}^{2} \geqslant 0 \\  \\

 \bf  \therefore \: f(x)_{min} = 2

◍ But,

  • Range of sin thera [ -1 , 1 ]

◆ ᴡᴇ ᴄᴀɴ ᴄᴏɴᴄʟᴜᴅᴇ ᴛʜᴇʀᴇ's ɴᴏ sᴏʟᴜᴛɪᴏɴs ғᴏʀ ʀᴇᴀʟ x

⁣⠀⠀⠀⠀⠀⠀⠀⠀_____________________

 \\  \\  \\  \\   \sf \colorbox{aqua}{MrPenciI}

Attachments:
Similar questions