Math, asked by chaudharymehak2800, 6 hours ago

sin theta upon 1+cos theta simplify it​

Attachments:

Answers

Answered by mittalgarima2007
5

{ \huge{ \green{ \underline{ \red{ \mathbb{ AnSwEr{!!}}}}}}}

THE CORRECT ANSWER IS OPTION B .

 \frac{\sin\theta}{1 \:  +  \: cos \ \theta}  =  \:   \frac{\sin \  \theta(1  \: -   \: \cos \  \theta)}{(1 \:  +   \: \cos \:  \theta) \: (1 \:  -  \:  \cos \  \theta)} \\  \\  \:  \:  \:  \:  \:  \:  =  \frac{\sin \  \theta(1 \:  -  \:  \cos \  \theta)}{1 \:  -  \:   { \cos}^{2} \  \theta }  \\  \\ \:  \:  \:  \:  \:  \:   \:  =    \frac{\sin \  \theta(1 \:  -  \:  \cos \  \theta)}{ { \sin}^{2} \  \theta} \\  \\   =  \: \frac{1 \:  -  \: cos \  \theta}{sin \  \theta}

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given Trigonometric expression is

\rm :\longmapsto\:\dfrac{sin\theta }{1 + cos\theta }

So, on rationalizing the denominator, we get

\rm \:  =  \: \dfrac{sin\theta }{1 + cos\theta }  \times \dfrac{1 - cos\theta }{1 - cos\theta }

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}}

So, using this, we get

\rm \:  =  \: \dfrac{sin\theta (1  -  cos\theta )}{1 -  {cos}^{2}\theta  }

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {sin}^{2}x +  {cos}^{2}x = 1}}}

So, using this identity, we get

\rm \:  =  \: \dfrac{sin\theta (1 -  cos\theta )}{{sin}^{2}\theta  }

\rm \:  =  \: \dfrac{1 - cos\theta }{sin\theta }

Hence,

 \\ \red{\rm\implies \:\boxed{\tt{ \rm \:\dfrac{sin\theta }{1 + cos\theta }   =  \: \dfrac{1 - cos\theta }{sin\theta } }}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions