Math, asked by sahil1237287150, 1 year ago

sin theta upon 1 minus cos theta is equal to cos theta + cot theta prove​

Answers

Answered by surendra7231
3

Step-by-step explanation:

 \sin( \beta )  \div 1 -  \cos( \beta )  =  \cos( \beta )  +  \cot( \beta )

take LHS

multiple sin(beta) up and down

than

 { \sin( \beta ) }^{2}  = 1 -   { \cos( \beta ) }^{2}

than

1 -  { \cos( \beta  ) }^{2}  = (1 +  \cos( \beta ))(1 -  \cos( \beta ) )

than it becomes

(1 +  \cos( \beta ) ) \div  \sin( \beta )

which is cesec+cot

Answered by Anonymous
105

AnswEr :

To Prove :

 \dfrac{ \sin( \theta) }{1- \cos( \theta)} =  \csc( \theta)  +  \cot( \theta)

Proof :

\longrightarrow \dfrac{ \sin( \theta) }{1- \cos( \theta)}

\longrightarrow \dfrac{ \sin( \theta) }{1- \cos( \theta)} \times 1

⠀⠀⠀⠀⋆ Multiplying by 1 + cos(θ) / 1+ cos(θ)

\longrightarrow \dfrac{ \sin( \theta) }{1- \cos( \theta)} \times \dfrac{ 1 +  \cos( \theta) }{1 +  \cos( \theta)}

\longrightarrow \dfrac{ \sin( \theta) (1 +  \cos( \theta))}{1- \cos^{2} ( \theta)}

⠀⠀⠀⠀⋆ 1 - cos²(θ) = sin²(θ)

\longrightarrow \dfrac{  \cancel{\sin( \theta)} (1 +  \cos( \theta))}{  \cancel{\sin^{2} ( \theta)}}

\longrightarrow \dfrac{(1 +  \cos( \theta))}{ \sin( \theta)}

\longrightarrow \dfrac{ 1}{ \sin( \theta)} + \dfrac{ \cos( \theta)}{ \sin( \theta)}

⠀⠀⠀⠀⋆ 1 / sin(θ) = cosec(θ)

⠀⠀⠀⠀⋆ cos(θ) / sin(θ) = cot(θ)

\longrightarrow  \large\csc( \theta)  +  \cot( \theta)

 \therefore \boxed{ \dfrac{ \sin( \theta) }{1- \cos( \theta)} =  \csc( \theta)  +  \cot( \theta) }

Similar questions