Math, asked by Shobhitdas, 1 year ago

sin theta upon oneplus cos theta + 1 + cos theta upon sin theta equals to 2 cosec theta

Attachments:

Answers

Answered by Shuddhi
55
You can get your solution above.
Hope it is the one you need.
Please mark this answer as a brainliest one.
Attachments:
Answered by mysticd
12

Answer:

\frac{sin\theta}{1+cos\theta}+\frac{1+cos\theta}{sin\theta}\\=2cosec\theta

Step-by-step explanation:

We \: have \\LHS=\frac{sin\theta}{1+cos\theta}+\frac{1+cos\theta}{sin\theta}\\=\frac{sin^{2}\theta+(1+cos\theta)^{2}}{(1+cos\theta)sin\theta}

=\frac{sin^{2}\theta+1^{2}+(cos\theta)^{2}+2\times 1\times cos\theta}{(1+cos\theta)sin\theta}

=\frac{(sin^{2}\theta+cos^{2}\theta)+1+2\times cos\theta}{(1+cos\theta)sin\theta}

=\frac{1+1+2\times cos\theta}{(1+cos\theta)sin\theta}

/* By Trigonometric identity:

sin²A+cos²A=1 */

=\frac{2+2\times cos\theta}{(1+cos\theta)sin\theta}

=\frac{2(1+ cos\theta)}{(1+cos\theta)sin\theta}

After cancellation, we get

= \frac{2}{sin\theta}

= 2cosec\theta

=$RHS$

Therefore,

\frac{sin\theta}{1+cos\theta}+\frac{1+cos\theta}{sin\theta}\\=2cosec\theta

•••♪

Similar questions