Math, asked by vaaruna35, 1 year ago

Sin thetha/1+cos thetha+1+cos thetha/sinthetha=2 cosec therha

Answers

Answered by brainly2006
1

Answer:

Here is your answer mate! Hope this helps you

Attachments:
Answered by DynamicB0Y
1

Answer :

 \implies \sf \dfrac{ \sin \theta}{1 +  \cos\theta} +  \dfrac{1 +  \cos\theta}{ \sin\theta}  = 2 \csc\theta

By taking LCM

 \implies \sf\frac{ { \sin}^{2}\theta +  {(1 +  \cos\theta)}^{2} }{(1 +  \cos\theta)( \sin\theta)}  \\  \\\implies \sf \frac{ { \sin}^{2}\theta +1 +2 \cos \theta +{\cos}^{2} \theta }{(1 +  \cos\theta)( \sin\theta)} \\  \\\implies \sf  \frac{1 + 1 + 2 \cos \theta }{(1 +  \cos\theta)( \sin\theta)} \\  \\\implies \sf \frac{2 +  2 \cos \theta }{(1 +  \cos\theta)( \sin\theta)} \\  \\\implies \sf \frac{2( \cancel{1 +  \cos \theta}) }{( \cancel{1 +  \cos\theta})( \sin\theta)} \\  \\  \implies \sf 2\times\frac{1}{ \sin \theta} \\  \\\implies \sf 2 \times  \csc  \theta \\  \\ \implies \sf 2 \csc \theta

LHS = RHS

Hence Proved

Similar questions