Math, asked by deepaliagrawal398, 1 month ago

sin thetha + sec thetha whole square+ cos thetha+ cosec thetha whole square= 1 + sec thetha + cosec thetha whole square​

Answers

Answered by yashita7749
0

solution of the above problem

Attachments:
Answered by hariommaurya97
1

\huge\red{\underline{\mathfrak{Solution}}}

Taking LHS

→ ( sinθ + secθ)² +( cosθ + cosecθ)²

 =  {(sinθ +  \frac{1}{cosθ} )}^{2} +  {(cosθ +  \frac{1}{sinθ}) }^{2}

 = ( { \frac{sinθ.cosθ + 1}{cosθ} })^{2}  +  {( \frac{sinθ.cosθ + 1}{sinθ} })^{2}

 =  ({sinθ.cosθ + 1 )}^{2} (  \frac{1}{ {cos}^{2} θ}  +  \frac{1}{ {sin}^{2}θ } )

 = ( {sin}^{2}θ {cos}^{2} θ + 2sinθ.cosθ + 1)( \frac{ {sin}^{2} θ +  {cos}^{2} θ}{{sin}^{2} θ .  {cos}^{2} } )

 = ( \frac{ {sin}^{2} θ .  {cos}^{2} θ}{{sin}^{2} θ .  {cos}^{2} } ) +  \frac{2 \sinθ \cosθ  }{ {sin}^{2} θ. { \ \cos  }^{2} θ}  +   \frac{1}{ {sin}^{2}θ. { \cos}^{2}θ }

 = 1 + 2secθ.cosθ + \: {sec}^{2}θ. {cosec}^{2}θ

 =  ({1 + secθ.cosecθ)}^{2}

 = RHS

Similar questions