Math, asked by arnav9688, 10 months ago

sin Thita +cos Thita =√2 find all trigonometry ratio​

Answers

Answered by tahseen619
2

See in the attachment.

Step-by-step explanation:

Given:

sinø + cosø = √2

To find:

All Trigonometry Ratio

Solution:

 \sin+  \cos  =  \sqrt{2}  \\  \\  \sin +  \sqrt{1 -  {sin}^{2} }  =  \sqrt{2}  \\  \\   \sqrt{1 -  { \sin}^{2} }  =  \sqrt{2}  -  \sin

[Squaring both side]

 \sqrt{1 -  { \sin}^{2} x}  =  \sqrt{2}  -  \sin x\\  \\({\sqrt{1 -  { \sin}^{2}x } )}^{2}   =  (\sqrt{2}  -  \sin ) {}^{2}x  \\  \\ 1 -  { \sin}^{2} x=  {( \sqrt{2}) }^{2}x - 2. \sin. x\sqrt{2}     +  { \sin }^{2}x \\  \\ -  { \sin }^{2}x    -  { \sin }^{2}x =2 - 1 - 2 \sqrt{2} \sin \: x    \\  \\  0 = 2 { \sin \: }^{2} x - 2 \sqrt{2}  \sin + 1 \\  \\ ( \sqrt{2} \sin x){}^{2}  - 2. \sqrt{2}\sin \: x.1 +  {1}^{2} = 0 \\  \\ ( \sqrt{2}  \sin x- 1) {}^{2}  = 0 \\  \\  \sqrt{2} \sin x- 1 = 0 \\  \\\sqrt{2} \sin  x= 1 \\  \\ \sin x =  \frac{1}{ \sqrt{2} }    \\  \\  \sin \: x =  \sin \: \:45 \\  \\ x\:  = 45

Therefore, All Trigonometry Ratio are tan 45° , cot 45° , cosec 45°, sec 45°, cos 45°, sin 45° .

Attachments:
Similar questions