Math, asked by adorablequeen14, 3 months ago

sin tita 1/2 then the value of cos tita​

Answers

Answered by BrainlyRish
2

Given : \sf{\sin \theta  = \dfrac{1}{2}}\\

Need To Find : The value of \cos \theta .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Basic Formulas of Trigonometry is given by :

  • \boxed { \begin{array}{c c} \\ \dag \qquad \large {\underline {\bf{ Some \:Basic\:Formulas \:For\:Trigonometry \::}}}\\\\ \sf{ In \:a \:Right \:Angled \: Triangle-:} \\\\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star  \tan \theta = \dfrac{Perpendicular}{Base}} \end{array}}\\

Then,

  • \sf{\sin \theta = \dfrac{1}{2}= \dfrac{Perpendicular} { Hypotenuse} }\\

Therefore,

  • Perpendicular of Right Angled Triangle is 1 cm .

  • Hypotenuse of Right angled triangle is 2 cm .

⠀⠀⠀⠀⠀Finding Base of Right angled triangle :

\sf{\underline {\dag As, \:We \:Know\:that \::}}\\ \\ \bf{ By \:Pythagoras\:Theorem\::}\\

\underline {\boxed {\sf{\star (Perpendicular)^{2} + Base^{2}  = ( Hypotenuse)^{2} }}}\\

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

⠀⠀⠀⠀⠀:\implies \tt{ 1^{2} + x^{2} = 2^{2}}\\

⠀⠀⠀⠀⠀:\implies \tt{ 1 + x^{2} = 4 }\\

⠀⠀⠀⠀⠀:\implies \tt{  x^{2} = 4 - 1}\\

⠀⠀⠀⠀⠀:\implies \tt{  x^{2} = 3}\\

⠀⠀⠀⠀⠀:\implies \tt{  x = \sqrt{3}}\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  x = \sqrt{3}\: cm}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\underline {\therefore\:{ \mathrm {  Base  \:of\:Right \:Angled \:triangle \:is\:\sqrt {3}\: }}}\\

❒ Finding value of \bf{\cos\theta} by using found values :

\sf{\underline {\dag As, \:We \:Know\:that \::}}\\ \\

\sf{\cos \theta =  \dfrac{Base} { Hypotenuse} }\\

Where ,

  • Base of Right Angled Triangle is \sqrt {3}.

  • Hypotenuse of Right angled triangle is 2 .

Therefore,

⠀⠀⠀⠀⠀\sf{\cos \theta = \dfrac{\sqrt{3}}{2}= \dfrac{Base} { Hypotenuse} }\\

\underline {\boxed{\pink{ \mathrm { Hence,\:The\:Value \:of\:\cos \theta  = \dfrac{\sqrt{3}}{2}\: }}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions