sin tita /1-cos tita = cosec tita + cot tita
Answers
Answered by
33
Given :-
- Sin∅ / 1 - cos∅
To Find :-
- Cosec∅ + cot∅
Now,
→ Sin∅ / 1 - cos∅
- Rationalising it
→ (Sin∅ / 1 - cos∅) ( 1 + cos∅ / 1 + cos∅ )
→ sin∅ ( 1 + cos∅ ) / 1 - cos²∅
→ sin∅ + sin∅cos∅ / sin²∅
→ sin∅ ( 1 + cos∅ ) /sin²∅
→ (1 + cos∅) / sin∅
→ 1/sin∅ + cos∅ / sin∅
→ cosec∅ + cot∅
Hence, Proved.
Answered by
19
= Sinθ/(1 – cosθ) + Tanθ/(1 + cosθ)
= (sinθ(1 + cosθ) + Tanθ(1-Cosθ))/(1 – Cos²θ)
= (sinθ(1 + cosθ) + (Tanθ – Sinθ)) /Sin²θ
= ( 1 + cosθ + 1/Cosθ – 1)/Sinθ
Hence Proved.
RHS.
See Attachment.
Attachments:
Anonymous:
Good :)
Similar questions