Physics, asked by kua231386, 9 months ago

sin wt× cos wt= ? in integration​

Answers

Answered by Anonymous
8

AnswEr :

Given Expression,

 \displaystyle \sf \: l =   \int sin(wt)cos(wt).dt

Multiplying and Dividing by 2,

 \implies \displaystyle \sf \: l =   \dfrac{1}{2}  \int 2sin(wt)cos(wt).dt

Since, sin2∅ = 2sin∅cos∅

 \implies \displaystyle \sf \: l =   \dfrac{1}{2}  \int sin(2wt).dt

Let u = 2wt.

Differentiating w.r.t t on both sides,

 \longrightarrow \sf  \dfrac{du}{dt}  = 2w \\  \\  \longrightarrow \sf  \dfrac{du}{2w}  = dt

Now,

 \implies \displaystyle \sf \: l =   \dfrac{1}{2(2w)}  \int sin(u).du \\  \\  \implies \displaystyle \sf \: l =  -   \dfrac{cos(t)}{2(2w)}   + c \\  \\   \implies  \boxed{ \boxed{ \sf \: l =   -\dfrac{cos(wt)}{4w}   + c}}

Similar questions