Math, asked by ujji680, 1 year ago

sin x = 1/4, x lies in 2nd quadrant. Find sin x/2, cos x/2, tan x/2.

Answers

Answered by waqarsd
24
check the attachment
Attachments:
Answered by SerenaBochenek
30

Answer:

sin{\frac{x}{2}=\sqrt{\frac{4+\sqrt{15}}{8}}

cos{\frac{x}{2}}=\sqrt{\frac{4-\sqrt{15}}{8}}

tan{\frac{x}{2}=\sqrt{\frac{4+\sqrt{15}}{4-\sqrt{15}}

Step-by-step explanation:

Given sinx=\frac{1}{4}, x lies in second quadrant.

we have to find the value of sin{\frac{x}{2}}, cos{\frac{x}{2}}, tan{\frac{x}{2}}

Since, sin^2{x}+cos^2{x}=1

cos{x}=\pm{\sqrt{1-sin^2{x}}}

cos{x}=\pm{\sqrt{1-\frac{1}{16}}}=\pm{\frac{\sqrt{15}}{4}}

Since, x lies in second quadrant

cos{x}=-{\frac{\sqrt{15}}{4}}

Now, by using identity of cos 2x

2cos^2(\frac{x}{2})=1+cos{x}

cos{\frac{x}{2}}=\sqrt{\frac{1}{2}(1+cos{x})}=\sqrt{\frac{1}{2}(1-{\frac{\sqrt{15}}{4}})}=\sqrt{\frac{4-\sqrt{15}}{8}}

Also,  sin^2{\frac{x}{2}}=1-cos^2{\frac{x}{2}}

sin{\frac{x}{2}=\sqrt{1-cos^2({\frac{x}{2})}}=\sqrt{1-\frac{4-\sqrt{15}}{8}}=\sqrt{\frac{4+\sqrt{15}}{8}}

Now,

tan{\frac{x}{2}=\frac{sin\frac{x}{2}}{cos{\frac{x}{2}}}=\frac{\sqrt{\frac{4+\sqrt{15}}{8}}}{\sqrt{\frac{4-\sqrt{15}}{8}}}=\sqrt{\frac{4+\sqrt{15}}{4-\sqrt{15}}

Similar questions