Math, asked by Anonymous, 1 year ago

sin x ( 1+tan x) +cos x (1+cotx)=sec x +cosec x


❌❌No spam❌❌

Answers

Answered by Anonymous
160

Solution:-

On taking LHS

 =  \sin(x) (1 +  \tan(x) ) +  \cos(x) (1 +  \cot(x) ) \\  \\  =  \sin(x)  +  \frac{  { \sin}^{2}x  }{ \cos(x) }  +  \cos(x)  +  \frac{ \cos {}^{2} ( x) }{ \sin(x) }  \\  \\  =  \frac{ \sin {}^{2} (x) \cos(x)  +  \sin {}^{3} (x)   +  \sin(x)  \cos {}^{2} (x)  +  \cos {}^{3} (x) }{ \sin(x) \cos(x)  }  \\  \\  =  \frac{\sin {}^{2} (x) \cos(x)  +  \cos {}^{3} (x) +  \sin {}^{3} (x)   +  \sin(x)  \cos {}^{2} (x)}{ \sin(x) \cos(x)  }  \\  \\  =  \frac{ \cos(x) ( \sin {}^{2} (x)  +  \cos {}^{2} (x)) +   \sin(x)( \sin {}^{2} (x)  +  \cos {}^{2} (x))  }{ \cos(x)  \sin(x) }  \\  \\  =  \frac{ \cos(x)  +  \sin(x) }{ \cos(x)    \sin(x) }  \\  \\  =  \frac{1}{ \sin(x) }  +  \frac{1}{ \cos(x) }  \\  \\  =  \csc(x)  +  \sec(x)  \\  \\  =  \sec(x)  +  \csc(x)

= RHS

HENCE PROVED.

Answered by shree543
4

Answer:

Hello dear user!!! ✌️✌️

The following attachment will show you the answer.....

================================================

I HOPE THIS WILL HELPS YOU ✌️✌️

HAVE A GREAT DAY AHEAD ✌️✌️

^_^

Attachments:
Similar questions