Accountancy, asked by sanjaykumarkuma9231, 1 day ago

sin x=12\ 13 ആണെങ്കില് cos x,tan x ഇവ കണക്കാക്കുക malayalam​

Answers

Answered by vikkiain
1

cos \: x =  \frac{5}{13}  \:  \: and \:  \: tan \: x =  \frac{12}{5}

Explanation:

Given, \:  \:  \: sin \: x =  \frac{12}{13}  \\ we \:  \: know \:  \:  \boxed{cos^{2}x = 1 - sin^{2}x } \\ then, \:  \:  \: cos^{2}x = 1 - ( \frac{12}{13} )^{2}  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: cos^{2}x   = 1 -  \frac{144}{169}  \\ \:  \: cos^{2}x   =  \frac{25}{169}  \\  \:  \:  \:  \:  \: cos \: x =  \sqrt{ \frac{25}{169} }  \\  \boxed{cos \: x =  \frac{5}{13} } \\ Now, \:  \:  \: tan \: x  =  \frac{sin \: x}{cos \: x}  \\ \:  \:  \:  \:  \:  \:  \: \: tan \: x  =  \frac{ \frac{12}{13} }{ \frac{5}{13} }  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: tan \: x =  \frac{12}{13}  \times  \frac{13}{5}  \\ \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ tan \: x  =  \frac{12}{5} }

Similar questions