Math, asked by dwivedishruti8575, 10 months ago

Sin x - 20 degree = cos 3 x - 10 degree find the value of x

Answers

Answered by dnyaneshwar792003
0

Answer:

Step-by-step explanation:

Hi ,

This is related to Trigonometric Ratios of Complementary Angles.

As we know that two angles are said to be complementary if their

sum equals 90° .

i ) sin ( 90 -  A ) = cos A

ii ) cos ( 90 - A ) = sin A

According to the problem ,

a ) sin ( x - 20 ) = cos ( 3x - 10 )

  ⇒  sin ( x - 20 ) = sin [ 90 - ( 3x - 10 ) ]

  ⇒   x - 20 = [ 90 - ( 3x - 10 ) ]

  ⇒   x - 20 = 90 - 3x + 10

  ⇒   x + 3x = 90 + 10 + 20

  ⇒         4x = 120

  ⇒           x = 120 / 4

   ∴          x = 30°

Or 

 sin ( x - 20 ) = cos ( 3x - 10 )

⇒ cos [ 90 - ( x - 20 ) ] = cos ( 3x - 10 ) 

⇒          90 - ( x - 20 )   = 3x - 10

⇒          90 - x + 20       = 3x  - 10

⇒                110 - x       = 3x - 10

⇒                 110 + 10   = 3x + x

⇒                          120  = 4x

                          ∴ 4x = 120

                               x = 120 / 4

                               x = 30°

I hope this helps you.

Have a good day !

MARK AS BRAINLIEST PLEASE

Answered by saritabhansali
1

Answer:

x=15

Step-by-step explanation:

x-20=3x-10

x-3x=-30

-2x=-30

-x=-15

x=15

Similar questions