Math, asked by kherachohan9803, 11 months ago

Sin x+cos 3x+sin 5x)/(cos x+cos 3x+sin 5x)

Answers

Answered by umiko28
0

Answer:

 \huge \ {\underline{\mathfrak\red{hola mate}}}

Step-by-step explanation:

\huge\ {\underline{\mathfrak\green{your \: ans}}}

sin x+sin 3x+sin 5x)/(cos x+cos 3x+cos 5x)

=>(sin x + sin 5x) + sin 3x / (cos x + cos 5x) + cos 3x 

= 2sin (x+5x/2)cos (x-5x/2) + sin 3x/ 2cos (x+5x/2)cos (x-5x/2) +cos 3x

=2sin3x cos(-2x) + sin 3x/ 2cos3x cos(-2x) +cos 3x

=2 sin3x(cos 2x) / 2 cos 3x(cos 2x)     

 

as cos 2x and 2 are common on both numerator and dinominator]

 

=sin 3x/ cos 3x =tan 3x.

\huge\ {\underline{\mathfrak\red{pls \: follow \: me \: and \: mark \: as \: brainlis}}}

Similar questions