Math, asked by bhumireddynagmailcom, 3 months ago

sin x + cos x = 1 find general solutions​

Answers

Answered by gourahariacharya123
1

Step-by-step explanation:

sin x+cos x=1

√2[sin x/2+cos x/2] =1

sinx. cos45°+cosx.sin45°=1/√2

sin(x+pi/4)=sin(n pie+(-1)^n pie/4)

hence (x+pi/4)= n pie +(-1)^n pie/4

x= n pie +(-1) pie^n pie/4-pi/4

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:sinx + cosx = 1

 \red{ \sf \: On \: dividing \: both \: sides \: by \:  \sqrt{ {1}^{2}  +  {1}^{2} } =  \sqrt{2}, \: we \: get}

\rm :\longmapsto\:\dfrac{1}{ \sqrt{2} }sinx  + \dfrac{1}{ \sqrt{2} }cosx= \dfrac{1}{ \sqrt{2} }

\rm :\longmapsto\:sin\dfrac{\pi}{4} sinx + cos\dfrac{\pi}{4}cosx = cos\dfrac{\pi}{4}

   \:  \:  \:  \:  \:  \:  \:  \:  \:   \red{\: \bigg\{ \because \sf \: cos\dfrac{\pi}{4} = sin\dfrac{\pi}{4} =  \dfrac{1}{ \sqrt{2} }  \bigg\}}

\rm :\longmapsto\:cos\bigg(x - \dfrac{\pi}{4} \bigg)  = cos\dfrac{\pi}{4}

  \:  \:  \: \red{  \:  \bigg\{  \sf\:  \because \:  \: cos(x - y) = cosxcosy + sinxsiny \:  \bigg \}}

\rm :\longmapsto\:x - \dfrac{\pi}{4} = 2n\pi \:  \pm \: \dfrac{\pi}{4}

\red{  \:  \bigg\{  \sf\:  \because \:  \: cosx  = cosy  \implies \: x = 2n\pi \pm \: y \: where \: n \in \:Z \:  \bigg \}}

\rm :\implies\:x = 2n\pi \:  \: or \: x = 2n\pi + \dfrac{\pi}{2} \:  where \: n \in \: Z

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi \\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\\ \\ \sf tanx = 0 & \sf x = n\pi\\ \\ \sf sinx = siny & \sf x = n\pi +  {( - 1)}^{n}y \\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\\ \\ \sf tanx = tany & \sf x = n\pi + y \end{array}} \\ \end{gathered}

 \:  \:   \rm \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \bull \:  \:  \:  \:  \:  \: where \: n \in \: Z

Similar questions