Math, asked by jiyariya, 1 year ago

(sin x + cosec x)^2 + (cos x + sec x)^2 = tan^2 x + cot^2 x + 7


sanya55: I want to answer
jiyariya: please answer

Answers

Answered by 123sachin
2
LHS is equal to RHS proved
Attachments:
Answered by sanya55
1
Heya!!Here is your answer friend ⤵⤵

Formulas being used in the question=
sin {}^{2} x + cos {}^{2} x = 1 \\ cosec {}^{2} x = 1 + cot {}^{2}x \\ sec {}^{2}  x = 1 + tan {}^{2} x
SOLUTION➡
(sin \: x \:  +  \: cosec \: x) {}^{2}  + (cos \: x \:  + sec \: x) {}^{2}  \\ using \: the \: identity \: (x + y) {}^{2}  = x {}^{2}  + y {}^{2}  + 2xy \\ we \: have \\ sin {}^{2} x \:  +  \: cosec { \: }^{2} x \:  + 2 \: sin \: x \:  \times  \frac{1}{ \sin \: x } + cos {}^{2}  x  + sec {}^{2} x + 2 \: cos \: x \:  \times  \frac{1}{cos \: x}  \\ sin {}^{2} x + cos {}^{2} x + 4 + cosec {}^{2} x + sec  {}^{2} x \\ 1 + 4 + 1 + cot {}^{2} x + 1 +  \tan {}^{2} x \\ 7 + cot {}^{2} x + tan {}^{2} x = rhs

Hope it helps you ✌✌
Similar questions