Math, asked by zithbear4967, 10 months ago

Sin x power cos x differentiation

Answers

Answered by subhashnidevi4878
0

\frac{dy}{dx} = {sinx}^{cosx}\left ( \frac{cos^{2}{}x}{sinx} - sinx\times\log{x} \right )

Step-by-step explanation:

given,

y = {sinx}^{cosx}

Taking log on both side,

log\times(y) = log\times({sinx})^{cosx}

log\times(y) = cos{x}\times\ln{sinx}

Using 'chain rule' to differentiate,\ln{sinx}

\frac{1}{y}\times{dy} = cos{x}\times\frac{1}{sinx}{\times{cosx}} + log{sinx}{\times(-sinx)}dx

\frac{dy}{dx} = y\times\left ( cos{x}\times\frac{1}{sinx}{\times{cosx}} + log{sinx}{\times(-sinx)} \right )

\frac{dy}{dx} = {sinx}^{cosx}\left ( \frac{cos^{2}{}x}{sinx} - sinx\times\log{x} \right )

Similar questions