Math, asked by pavanganesh7190, 8 months ago

Sin(x)×sin(120-x)×sin(120+x)

Answers

Answered by paulerdo
0

Answer:

the answer is

 \frac{1}{4}  \sin(3x)

Step-by-step explanation:

the answer is explained in the image.

Attachments:
Answered by siddhibhatia150304
1

 \huge \underline \bold \color{teal} \mathfrak{Answer }

 \sin(x)  \sin(120 - x)  \sin(120 + x)

Multiplying and dividing by 2

 \frac{ \sin(x) }{2} (2 \sin(120 - x) \sin(120 + x)  )

Using the formula 2 sin A sin B = cos(A-B) - cos(A+B), we get

 \ \frac{ \sin(x) }{2}  ( \cos( - 2x)  -  \cos(240) )

Since cos(-A) =cos A and cos 240 = - 1/2

 \frac{ \sin(x) }{2} ( \cos(2x)  +  \frac{1}{2} )

 \frac{ \sin(x)  \cos(2x) +  \sin(x)  }{2}

Multiplying and dividing by 2.

 \frac{2 \sin(x) \cos(2x)  }{4}  +  \frac{ \sin(x) }{4}

Using the formula 2 sin A cos B = sin(A+B) +sin(A-B)

 \frac{ \sin(3x) -  \sin(x)   +  \sin(x) }{4}

 \huge \color{green} \frac{ \sin(3x) }{4}

Hope it helps.....

Plzz mark it as brainliest ✨ ✨

Similar questions