sin x sin (cos x) integration
Answers
Answered by
2
Answer:
cos(cosx)+c
Step-by-step explanation:
okkkkkkkkkkkkkkkkkkkkkkkkkk
Attachments:
Answered by
1
Step 1
Let cos x = t
Differentiating both the sides w.r.t.x
-sin x = dt/dx
dx=dt/-sin x
Step 2
Intergrating function
{ sin x . sin (cos x) .dx
Putting values of t and dt
{ sin x . sin t . dt/-sin x
- { sin t .dt
-(-cos t + C )
cos t+ K
Putting t=cos x
cos(cos x) + K
Let cos x = t
Differentiating both the sides w.r.t.x
-sin x = dt/dx
dx=dt/-sin x
Step 2
Intergrating function
{ sin x . sin (cos x) .dx
Putting values of t and dt
{ sin x . sin t . dt/-sin x
- { sin t .dt
-(-cos t + C )
cos t+ K
Putting t=cos x
cos(cos x) + K
Similar questions
Social Sciences,
6 months ago
Physics,
1 year ago