sin x +sin y = a, cos x +cos y= b then sin(x+y) =
Answers
Answered by
86
Answer:-
_____________________________❤❤
Answer is 2ab/a^2+b^2✌✌⏩
let us solve:-
Identities used:-
⏩sin(2x)=>2sinx.cosx
⏩sin(x+y)=>sinx.cosy + siny.cosx
⏩sinx+siny =>2sin[(x+y)/2]cos[(x+y)/2]
__________________❤❤❤
Now,According to question
ab=>(sinx+siny)(cosx+cosy)
=>sinx.cosx +(sinx.cosy +siny.cosx)+siny.cosy
=>1/2sin(2x)+1/2sin(2y)+sin(x+y)
=>sin(x+y)+1/2[sin(2x)+sin(2y)]
=>sin(x+y)[1+cos(x-y)]. -(eq1)
a^2=>(sinx+siny)^2=>sinx^2+siny^2+2sinx.siny
b^2=>(cosx+cosy)^2=>cosx^2+cosy^2+2cosx.cosy
a^2+b^2=>2 + 2cos(x-y)=>2[1+cos(x-y)]. (eq2)
____________________❤❤
sin(x+y)=>2ab/a^2+b^2(from eq1 and eq2)
______________hope it helps uh✌✌✌❤⏩
Answered by
3
Answer:
Pls don't go on writing........ Mark itz haryanvi as brnlst.......
@user died
Attachments:
Similar questions