(sin X +sin y)(sin X -sin y)/(cos y+cos X) (cos y -cos X)=???
Answers
Answer:
- [ sin{ ( X - Y ) / 2 } ] / [ sin{ ( Y - X ) / 2 ]
Step-by-step-explanation:
Given equation : [ ( sinX + sinY )( sinX - sinY ) / ( cosX + cosY )( cosY - cosX ) ]
From the properties of trigonometric ratios :
sinA + sinB = 2sin{ ( A + B ) / 2 }cos{ ( A - B )/ 2 }
sinA - sinB = 2cos{ ( A + B ) / 2 }sin{ ( A - B ) / 2 }
cosA + cosB = 2cos{ ( A + B ) / 2 } cos{ ( A - B ) / 2 }
cosA - cosB = - 2sin{ ( A + B ) / 2 } sin{ ( B - A ) / 2 }
By using the properties given above :
= > [ 2sin{ ( sinX + Y ) / 2 }cos{ ( X - Y )/ 2 } x 2cos{ ( X + Y ) / 2 }sin{ ( X - Y ) / 2 } ] / [ 2cos{ ( X + Y ) / 2 } cos{ ( X - Y ) / 2 } x - 2sin{ ( X + Y ) / 2 } sin{ ( Y - X ) / 2 } ]
= > - [ sin{ ( X - Y ) / 2 } ] / [ sin{ ( Y - X ) / 2 ]
Hence the required value is - [ sin{ ( X - Y ) / 2 } ] / [ sin{ ( Y - X ) / 2 ]
Step-by-step explanation:
cost of 4 pens 6 notebooks and 9 files is 305 rupees, the cost of 3 pens 4 notebooks and two files is 145 rupees find the cost of 5 pens 8 notebooks and 16 files and ther hukm