Sin x + y =1/3 and cos x + cos y=1/4 then cot(x+y/2) =
Answers
Answered by
3
hey mate your answer is here ⬇️⬇️⬇️
Answer:
\frac{3}{4}
Step-by-step explanation:
We have given,
cosx + cosy = 1/3,
\implies 2\cos(\frac{x+y}{2}).\cos (\frac{x-y}{2})=\frac{1}{3}----(1)
sinx + siny = 1/4,
\implies 2\sin (\frac{x+y}{2}).\cos (\frac{x-y}{2})=\frac{1}{4}----(2)
Dividing equation (2) by (1),
We get,
\frac{\sin (\frac{x+y}{2})}{\cos (\frac{x+y}{2})}=\frac{1/4}{1/3}=\frac{3}{4}
\implies \tan (\frac{x+y}{2})=\frac{3}{4}
( \because \tan x=\frac{\sin x}{\cos x} )
Similar questions