Math, asked by dunno, 1 year ago

sin (x + y)/sin(x-y)=a+b/a-b then what is the value of tanx/tany

Answers

Answered by TheLifeRacer
111
hєч!!!

hєrє íѕ ѕσlutíσn ín thíѕ gívєn píc

______________________

hσpє ít hєlpѕ чσu!!!

@Rajukumar111.
Attachments:
Answered by Anonymous
72
\textbf{Answer}

Given trigonometric equation is,

\textbf{sin(x+y) / sin(x-y) = (a+b) / (a-b)}

We know the componendo and dividendo property, that is,
\textbf{if a/b = c/d,}

\textbf{then (a+b) / (a-b) = (c+d) / (c-d)}

So by applying this componendo and dividendo property in the given trigonometric equation,

{sin(x+y) + sin(x-y)} / {sin(x+y) - sin(x-y)} = (a+b+a-b)/a+b-a+b) -------(1)

We know that,
\textbf{sin A+sin B = 2 sin(A+B)/2 . cos(A-B)/2}
&
\textbf{sin A-sin B = 2cos(A+B)/2 . sin(A-B)/2}

Using above formula in the given equation (1),

{2 sin (x+y+x-y)/2 . cos (x+y-x+y)/2} / {2 cos (x+y+x-y)/2 . sin (x+y-x+y)/2} = 2a / 2b

=> 2 sin x . cos y / 2 cos x . sin y = a/b

=> (sin x / cos x)(cos y / sin y) = a/b

=> tan x . cot y = a/b

We know that cot y = 1 / tan y

=> tan x / tan y = a/b

\textbf{So the value of tanx/tany is a/b}

\textbf{Hope It Helps}
Similar questions