Math, asked by devjob36, 1 year ago

Sin y= x sin(a+y), prove that dy+dx=sin^2(a+y)+sin a

Answers

Answered by shrijitjaigopap0bdet
2
Explanation:

siny=xsin(a+y).

∴x=sinysin(a+y).

Differentiating w.r.t. y, using the Quotient Rule, we have,

dxdy=sin(a+y)ddy{siny}sinyddx{sin(a+y)}sin2(a+y),

=sin(a+y)cosysinycos(a+y)ddy(a+y)sin2(a+y),...[The Chain Rule],

=sin(a+y)cosysinycos(a+y)sin2(a+y),

=sin{(a+y)−y}sin2(a+y),

=sinasin2(a+y).

dydx=1dxdy=sin2(a+y)sina

Similar questions