Math, asked by good2168, 10 months ago

sin0 + cos0 = √2 (where 0 ° <0 <90 °) is the value of 0​

Answers

Answered by Anonymous
13

Correct question :-

If sinθ + cosθ = 2 (where 0° < θ < 90°) , then find the value of θ.

Solution :-

sinθ + cosθ = √2

Squaring on both sides

⇒ (sinθ + cosθ)² = (√2)²

⇒ sin²θ + cos²θ + 2sinθcosθ = 2

[ Because (x + y)² = x² + y² + 2xy ]

⇒ 1 + 2sinθcosθ = 2

[ Because sin²θ + cos²θ = 1 ]

⇒ 2sinθcosθ = 2 - 1

⇒ 2sinθcosθ = 1

⇒ sin 2θ = 1

[ Because 2sinθcosθ = sin 2θ ]

⇒ sin 2θ = sin 90°

[ Because sin90° = 1 ]

Comparing on both sides

⇒ 2θ = 90°

⇒ θ = 90°/2

⇒ θ = 45°

Therefore the value of θ is 45°.

Answered by Anonymous
5

HEY MATE YOUR ANSWER IS HERE...

LET THETA BE “ X ”

★ GIVEN ★

sin \: x \:  +  \: cos \: x \:  =  \sqrt{2}

NOW

BY HIT AND TRIAL METHOD

LET X = 45°

HENCE ,

sin \: 45 \:  =  \frac{1}{ \sqrt{2} }

cos \: 45 =  \frac{1}{ \sqrt{2} }

NOW

 \frac{1}{ \sqrt{2} } +  \frac{1}{ \sqrt{2} }  =  \sqrt{2}

 \frac{2}{ \sqrt{2} }  =  \sqrt{2}

HENCE

 \frac{ (\sqrt{2} ) ( \sqrt{2}) }{ \sqrt{2} }  =  \sqrt{2}

NOW

 \sqrt{2}  =  \sqrt{2}

HENCE VALUE OF X = 45°

OR VALUE OF THETA = 45°

THANKS FOR YOUR QUESTION HOPE THIS HELPS

KEEP SMILING ☺️✌️

Similar questions