Sin10.sin50.sin60.sin70=√3/16
Answers
Answered by
213
Given, sin10.sin50.sin60.sin70
=sin 60.sin10.sin50.sin70
= [(√3)/2]sin10sin50sin70
= [(√3)/2]sin10(cos(-20) - cos120)/2
= [(√3)/2]sin10(cos20 - cos120)/2
= [(√3)/2](sin10cos20 - sin10cos120)/2
= [(√3)/2](sin30 + sin(-10) - 2sin10cos120)/4
= [(√3)/2](sin30 + sin(-10) + sin10)/4
= [(√3)/2](1/2)/4
= (√3)/16
=sin 60.sin10.sin50.sin70
= [(√3)/2]sin10sin50sin70
= [(√3)/2]sin10(cos(-20) - cos120)/2
= [(√3)/2]sin10(cos20 - cos120)/2
= [(√3)/2](sin10cos20 - sin10cos120)/2
= [(√3)/2](sin30 + sin(-10) - 2sin10cos120)/4
= [(√3)/2](sin30 + sin(-10) + sin10)/4
= [(√3)/2](1/2)/4
= (√3)/16
Answered by
73
HERE IS YOUR ANSWER.
HOPE IT HELPS YOU.
Attachments:
Similar questions