Math, asked by harshbhattad13, 1 year ago

Sin10° + sin 50° - sin 80° + sin 140°=√2. Sin 25°

Answers

Answered by Anonymous
13
Hope this will help you
Attachments:

harshbhattad13: it's of factorization formula class 11
harshbhattad13: answer me
Anonymous: dekh lo
harshbhattad13: man I have spots of questions can you help me out
Answered by ColinJacobus
42

Answer: Proved.


Step-by-step explanation:  We are given to prove that -

\sin 10^\circ+\sin 50^\circ -\sin 80^\circ +\sin 140^\circ=\sqrt2~\sin 25^\circ..

To arrive at our result, we need to remember the following identities from Trigonometry.

\sin A+\sin B=2\sin(\dfrac{A+B}{2})\cos(\dfrac{A-B}{2}),\\\\\sin A-\sin B=2\cos(\dfrac{A+B}{2})\sin(\dfrac{A-B}{2}).\\

Also, we recall the following trigonometric values-

\sin 30^\circ=\dfrac{1}{2},~~\sin 45^\circ=\dfrac{1}{\sqrt2}.

In addition to these, we should remember

\cos(-A)=\cos A.

Let us start the proof.

L.H.S\\\\=\sin 10^\circ+\sin 50^\circ -\sin 80^\circ +\sin 140^\circ\\\\=2\sin(\dfrac{10^\circ+50^\circ}{2})\cos(\dfrac{50^\circ-10^\circ}{2})+2\cos(\dfrac{140^\circ+80^\circ}{2})\sin(\dfrac{140^\circ-80^\circ}{2})\\\\=2\sin 30^\circ\cos 20^\circ+2\cos 110^\circ\sin 30^\circ\\\\=2\times \dfrac{1}{2}\cos 20^\circ+2\times \dfrac{1}{2}\cos 110^\circ\\\\=\cos 20^\circ+\cos 110^\circ\\\\=\cos 20^\circ +\cos(90^\circ+20^\circ)\\\\=\cos 20^\circ-\sin 20^\circ\\\\=\sqrt2(\sin 45^\circ\cos 20^\circ-\cos 45^\circ\sin 20^\circ)\\\\=\sqrt2\sin(45^\circ-20^\circ)\\\\=\sqrt2\sin 25^\circ\\\\R.H.S.

Similar questions