Math, asked by AprameyYadav4990, 9 months ago

Sin11°19'cos18°41'+cos11°19'sin18°41'=?

Answers

Answered by pulakmath007
41

SOLUTION

TO DETERMINE

Sin11°19'cos18°41'+cos11°19'sin18°41'

FORMULA TO BE IMPLEMENTED

We are aware of the Trigonometric formula that

  \sf{}\sin(A + B  ) =  \sin A \cos B +  \cos A \sin B

EVALUATION

Now

  \sf{} \sin  {11}^{ \circ} 19' \:  \cos{18}^{ \circ} 41'  +  \cos  {11}^{ \circ} 19'  \sin  {18}^{ \circ} 41'

 = \sf{} \sin  ({11}^{ \circ} 19'  +  {18}^{ \circ} 41')  \:  (using \: above \: formula)

 = \sf{} \sin  {29}^{ \circ} 60'

 = \sf{} \sin  {30}^{ \circ}  \:  \: ( \because \:  {1}^{ \circ} =  60'  )

 =  \displaystyle \sf{} \frac{1}{2}

FINAL ANSWER

  \boxed{  \displaystyle\sf{} \sin  {11}^{ \circ} 19' \:  \cos{18}^{ \circ} 41'  +  \cos  {11}^{ \circ} 19'  \sin  {18}^{ \circ} 41' =  \frac{1}{2}  }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

if cosx+cosy+cosz=0=sinx+siny+sinz

then the possible value of cos(x-y/2)=k

then |2k|=?

https://brainly.in/question/19988900

Similar questions