Math, asked by HiccupBreslin, 1 year ago

sin15/cos15 x tan 45

Answers

Answered by pranithsundar
1
I hope my helping hands will help you my friend....
Attachments:

HiccupBreslin: but answer is supposed to be one
shreyasdubey03: Buddy the solution is wrong cause suppose you divide sin 60 by 1/2 you wont get sin 30
pranithsundar: i make receprocal. instead of it if u rationalise the denominator the answer will 1/2
Answered by aquialaska
0

Answer:

Value of given expression is 2 - √3

Step-by-step explanation:

Given Expression: \frac{sin\,15^{\circ}}{cos15^{\circ}}\times tan\,45^{\circ}

To find: Value of given Expression

Identity used,

tan(A+B)=\frac{tan\,A+tan\,B}{1+tan\,A\:tan\,B}

tan\,x=\frac{sin\,x}{cos\,x}

tan\,45^{\circ}=1\;\:and\:\:tan\,30^{\circ}=\frac{1}{\sqrt{3}}

Consider,

\frac{sin\,15^{\circ}}{cos15^{\circ}}\times tan\,45^{\circ}

\implies tan\,15^{\circ}\times1

\implies tan\,(45^{\circ}-30^{\circ})

\implies \frac{tan\,45^{\circ}-tan\,30^{\circ}}{1+tan\,45^{\circ}\:tan\,30^{\circ}}

\implies \frac{1-\frac{1}{\sqrt{3}}}{1+1\:\frac{1}{\sqrt{3}}}

\implies \frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\:\frac{\sqrt{3}+1}{\sqrt{3}}}

\implies \frac{\sqrt{3}-1}{\sqrt{3}+1}

\implies \frac{\sqrt{3}-1}{\sqrt{3}+1}\times\frac{\sqrt{3}-1}{\sqrt{3}-1}

\implies \frac{(\sqrt{3}-1)^2}{(\sqrt{3})^2-1^2}

\implies \frac{3+1-2\sqrt{3}}{3-1}

\implies \frac{4-2\sqrt{3}}{2}

\implies2-\sqrt{3}

Similar questions