Math, asked by kkp23238, 10 months ago

sin15/cose15=2-√3 to prove that

Answers

Answered by ITzBrainlyGuy
0

QUESTION:

prove that

\frac{\sin15°}{\cos15°}  = 2 -  \sqrt{3} \:  \\

USED FORMULAS:

sin(A - B) = sinAcosB - cosBsinA

cos(A - B) = cosAcosB - sinAsinB

(a - b)² = a² - 2ab + b²

(a + b)(a - b) = a² - b²

ANSWER:

in the question taking LHS( left hand side)

we know that

sin15° = sin(45° - 30°)

it is in the form of sin(A - B)

using the first formula

sin15° = sin45°cos30° - cos45°sin30°

sin45° = 1/√2 = cos45°

cos30° = √3/2

sin30° = 1/2

 \sin(15°)  =  \frac{1}{ \sqrt{2} } \times   \frac{ \sqrt{3} }{2}  -  \frac{1}{ \sqrt{2} }  \times  \frac{1}{2}

 \sin(15°)  =  \frac{ \sqrt{ 3} }{2 \sqrt{2} } -  \frac{1}{2 \sqrt{2} }  \\  \\  \sin(15°)   =  \frac{ \sqrt{3} - 1 }{2 \sqrt{2} }

cos15° = cos(45° - 30°)

using the second formula

cos15° = cos45°cos30° + sin45°sin30°

cos45° = 1/√2

cos30° = √3/2

sin45° = 1/√2

sin30° = 1/2

 \cos(15°) =  \frac{1}{ \sqrt{2} } \times  \frac{ \sqrt{3} }{2}   +  \frac{1}{ \sqrt{2} }  \times  \frac{1}{2}   \\  \\  \cos(15°)  =  \frac{ \sqrt{3} }{2 \sqrt{2} } +  \frac{1}{2 \sqrt{2} } \\  \\  \cos(15°)   =  \frac{ \sqrt{3} + 1 }{2 \sqrt{2} }

to find:

 \frac{ \sin(15°) }{ \cos(15°) }  \\  \\

substituting the values

 \frac{ \sin(15°) }{ \cos(15°) }    = \frac{ \frac{ \sqrt{3} - 1 }{2 \sqrt{2} } }{ \frac{ \sqrt{3 } + 1 }{2 \sqrt{2} } }  \\  \\  \\  \frac{ \sin(15°) }{ \cos(15°) }  =  \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1 }

rationalize the denominator

 \frac{ \sin(15°) }{ \cos(15°) }  =  \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1 } \times  \frac{ \sqrt{3} - 1 }{ \sqrt{3 }   - 1}

using third formula & fourth formula

 \frac{ \sin(15°) }{ \cos(15°) }  =  \frac{ {( \sqrt{3 } - 1) }^{2} }{ {( \sqrt{3}) -    }^{2}  {(1)}^{2} }

 \frac{ \sin(15°) }{ \cos(15°) }  =  \frac{4 - 2 \sqrt{3} }{2}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{2(2 -  \sqrt{3} )}{2}  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 2 -  \sqrt{3}

LHS = RHS

hence proved

Similar questions